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Intuitive Definitions of Functions

If my function f(n) is… Doubling N Adding 1 to N

Θ(1) Doesn't affect runtime

Θ(log n) (base independent) Adds 1 to runtime Affects runtime minimally

Θ(n) Doubles runtime Adds 1 to runtime

Θ(n2) Quadruples runtime Adds n to runtime

Θ(2n) (base dependent) Squares runtime Doubles runtime



Nested For Loops
There is No Magic Shortcut for 
Asymptotic Analysis
Amortized Analysis
Recursive Analysis
Binary Search (Intuitive)
Binary Search (Exact) (Bonus Video)
MergesortNested For Loops

Lecture 15, CS61B, Spring 2024



Loops Example 1: Based on Exact Count

Find the order of growth of the worst case runtime of dup1.

Worst case number of operations:

Overall worst case runtime:  Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)
   for (int j = i + 1; j < N; j += 1)

if (A[i] == A[j])
return true;

return false;

C = 1 + 2 + 3 + … + (N - 3) + (N - 2) + (N - 1) = N(N-1)/2
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Worst case runtime: Θ(N2)



Loops Example 1: Based on Exact Count

Find the order of growth of the worst case runtime of dup1.

Worst case number of operations:

Overall worst case runtime:  Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)
   for (int j = i + 1; j < N; j += 1)

// 1 unit of work
return false;

C = 1 + 2 + 3 + … + (N - 3) + (N - 2) + (N - 1) = N(N-1)/2
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Loops Example 1: Based on Exact Count

Find the order of growth of the worst case runtime of dup1.

Worst case number of operations:

Overall worst case runtime:  Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)

// N-i-1 units of work
return false;

C = 1 + 2 + 3 + … + (N - 3) + (N - 2) + (N - 1) = N(N-1)/2
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Worst case number of operations:
● Given by area of right triangle of side length N-1.
● Area is Θ(N2).

Loops Example 1: Based on Exact Count

Find the order of growth of the worst case runtime of dup1.

Worst case number of operations:

Overall worst case runtime:  Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)

// N-i-1 units of work
return false;
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Loops Example 2 [attempt #1]: http://yellkey.com/personal

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)). By simple, we mean there 
should be no unnecessary multiplicative constants or additive terms.

A. 1
B. log N
C. N

D. N log N
E. N2

F. Other

public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

for (int j = 0; j < i; j += 1) {
System.out.println("hello");
int ZUG = 1 + 1;

}
}

}  

Note that there’s only one case for this code 
and thus there’s no distinction between “worst 
case” and otherwise.



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

for (int j = 0; j < i; j += 1) {
//1 unit of work

} } }

C(N)



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

Cost model C(N):Work



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):

N=3 doesn't do anything extra

Work



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work

N=4,5,6,7 all print 7 times



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work

N=4,5,6,7 all print 7 times



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work

These N all print 15 times



Loops Example 2: Prelude to Attempt #2

Find a simple f(N) such that the 
runtime R(N) ∈ Θ(f(N)).
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public static void printParty(int N) {
for (int i = 1; i <= N; i = i * 2) {

//i units of work
}

}

C(N)

Cost model C(N):Work

C(N) = 1 + 2 + 4 + … + N, if N is a power of 2



Loops Example 2: Prelude to Attempt #2

We’re trying to find the order of growth of C(N):

N

C(N)

Cost model C(N):

C(N) = 1 + 2 + 4 + … + N, if N is a power of 2
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Loops Example 2 [attempt #2]: http://yellkey.com/cup

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

D. N log N
E. N2

F. Other

A. 1
B. log N
C. N

public static void printParty(int N) {
  for (int i = 1; i<=N; i = i * 2) {

for (int j = 0; j < i; j += 1) {
      System.out.println("hello");
      int ZUG = 1 + 1;
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C(N) = 1 + 2 + 4 + … + N, if N is a power of 2

Cost model C(N):



Loops Example 2: Prelude to Attempt #3

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

N C(N) 0.5 N 2N

1 1 0.5 2

4 1 + 2 + 4 = 7 2 8

7 1 + 2 + 4 = 7 3.5 14

8 1 + 2 + 4 + 8 = 15 4 16

27 1 + 2 + 4 + 8 + 16 = 31 13.5 54

185 … + 64 + 128 = 255 92.5 370

715 … + 256 + 512 = 1023 357.5 1430



Loops Example 2 [attempt #3] (no yellkey)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Cost model C(N), println(“hello”) calls:
● R(N) = Θ(1 + 2 + 4 + 8 + … + N) if N is power of 2.

D. N log N
E. N2

F. Something else

A. 1
B. log N
C. N

N C(N)

1 1

4 1 + 2 + 4 = 7

7 1 + 2 + 4 = 7

8 1 + 2 + 4 + 8 = 15

27 1 + 2 + 4 + 8 + 16 = 31

185 … + 64 + 128 = 255 

715 … + 256 + 512 = 1023

public static void printParty(int n) {
  for (int i = 1; i<=n; i = i * 2) {

for (int j = 0; j < i; j += 1) {
      System.out.println("hello");
      int ZUG = 1 + 1;

N C(N) 0.5 N 2N

1 1 0.5 2

4 7 2 8

7 7 3.5 14

8 15 4 16

27 31 13.5 54

185 255 92.5 370

715 1023 357.5 1430



Loops Example 2 [attempt #3] (no yellkey)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

R(N) = Θ(1 + 2 + 4 + 8 + … + N)
 = Θ(N)

A. 1
B. log N
C. N

D. N log N
E. N2

F. Something else



Loops Example 2 [attempt #3] (no yellkey)

Can also compute exactly:

1
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16



Loops Example 2 [attempt #3] (no yellkey)

Can also compute exactly:

2 1

4

8

16



Loops Example 2 [attempt #3] (no yellkey)

Can also compute exactly:

4 2 1

8

16



Loops Example 2 [attempt #3] (no yellkey)

Can also compute exactly:
● 1 + 2 + 4 + … + 2k = 2(2k) - 1

If N = 2k:
● 1 + 2 + 4 + … + N = 2N - 1

R(N) = Θ(1 + 2 + 4 + 8 + … + N)
 = Θ(N)

A. 1
B. log N
C. N

D. N log N
E. N2

F. Something else

8 4 2 1

16



Nested For Loops
There is No Magic Shortcut for 
Asymptotic Analysis
Amortized Analysis
Recursive Analysis
Binary Search (Intuitive)
Binary Search (Exact) (Bonus Video)
Mergesort

There is No Magic 
Shortcut for 
Asymptotic 
Analysis
Lecture 15, CS61B, Spring 2024



Repeat After Me...

There is no magic shortcut for asymptotic analysis problems
● Runtime analysis often requires careful thought.
● CS70 and especially CS170 will cover this in much more detail.
● This is not a math class, though we’ll expect you to know these:

○ 1 + 2 + 3 + … + Q = Q(Q+1)/2 = Θ(Q2)
○ 1k+2k+3k+ … + Qk (k >=0) = Θ(Qk+1)
○ 1 + 2 + 4 + 8 + … + 2Q = 2(2Q) - 1 = Θ(2Q)
○ k0+k1+k2+ … + kQ (k > 1) = Θ(kQ)

← Sum of First Natural Numbers (Link)

← Sum of First Powers of 2 (Link)

public static void printParty(int n) {
  for (int i = 1; i <= n; i = i * 2) {

for (int j = 0; j < i; j += 1) {
      System.out.println("hello");
      int ZUG = 1 + 1;

← Generalization of ^

← Generalization of ^

https://en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF
https://en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF


Repeat After Me...

There is no magic shortcut for asymptotic analysis problems
● Runtime analysis often requires careful thought.
● CS70 and especially CS170 will cover this in much more detail.
● This is not a math class, though we’ll expect you to know these:

○ 1 + 2 + 3 + … + Q = Q(Q+1)/2 = Θ(Q2)
○ 1k+2k+3k+ … + Qk (k >=0) = Θ(Qk+1)
○ 1 + 2 + 4 + 8 + … + N = 2(N) - 1 = Θ(N)
○ k0+k1+k2+ … + N (k > 1) = Θ(N)

← Sum of First Natural Numbers (Link)

← Sum of First Powers of 2 (Link)

public static void printParty(int n) {
  for (int i = 1; i <= n; i = i * 2) {

for (int j = 0; j < i; j += 1) {
      System.out.println("hello");
      int ZUG = 1 + 1;

← Generalization of ^

← Generalization of ^

Where N = kQ.

https://en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF
https://en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF


Repeat After Me...

There is no magic shortcut for asymptotic analysis problems (well… usually)
● Runtime analysis often requires careful thought.
● CS70 and especially CS170 will cover this in much more detail.
● This is not a math class, though we’ll expect you to know these:

○ 1k+2k+3k+ … + Qk (k >=0) = Θ(Qk+1)
○ k0+k1+k2+ … + kQ (k > 1) = Θ(kQ)

● Strategies:
○ Find exact sum.
○ Write out examples.
○ Draw pictures.

QR decomposition runtime, 
from “Numerical Linear 
Algebra” by Trefethen.

http://en.wikipedia.org/wiki/Master_theorem


Generalizing the two cases you need to know (Out of Scope)

● 1k+2k+3k+ … + Qk (k >=0) = Θ(Qk+1)
● k0+k1+k2+ … + kQ (k > 1) = Θ(kQ)

f(0)+f(1)+f(2)+...+f(N) (f continuous)



Generalizing the two cases you need to know (Out of Scope)

● 1k+2k+3k+ … + Qk (k >=0) = Θ(Qk+1)
● k0+k1+k2+ … + kQ (k > 1) = Θ(kQ)

f(0)+f(1)+f(2)+...+f(N) = Θ(integral of f(x) from 0 to N)
Some shortcuts exist
But they tend to be limited in scope



Nested For Loops
There is No Magic Shortcut for 
Asymptotic Analysis
Amortized Analysis
Recursive Analysis
Binary Search (Intuitive)
Binary Search (Exact) (Bonus Video)
Mergesort

Amortized 
Analysis
Lecture 15, CS61B, Spring 2024



Surely no function does this, right?

Let's play with this function a bit

public static void printParty(int n) {
  for (int i = 1; i <= n; i = i * 2) {

//i units of work
}

}



Surely no function does this, right?

Add Θ(N) work: Total runtime is still Θ(N) 

public static void printParty(int n) {
for (int i = 1; i <= n; i = i * 2) {

//i units of work
  }
 for (int i = 1; i <= n; i++) {

//1 unit of work
  }
}



Surely no function does this, right?

Combine the for loops. No asymptotic change in work done

public static void printParty(int n) {
for (int i = 1; i <= n; i++) {

//1 unit of work
if(i is a power of 2) {
    //i units of work
}

  }
}



Surely no function does this, right?

Put things in separate functions. Changes an O(1) thing to more O(1) things, so no 
runtime difference.

public static void printParty(int n) {
for (int i = 1; i <= n; i++) {

foo();
  } }
public static void foo() {

if(i is a power of 2) {
    bar(i);

} 
// 1 unit of work 

}
public static void bar(i) {

//i units of work
}



Surely no function does this, right?

Rename functions and define what we do in the commented code. No change in 
runtime

public void addMany(int n) {
for (int i = 0; i < n; i++) {

addLast(1);
  } }
public void addLast(int value) {

if(this.length == arr.length) {
resize(this.length * 2);

} //Happens every time length is 2k

//addLast code takes 1 unit of work 
}
public void resize(int i) {

//resizing takes i units of work
}



Why geometric resizing is faster

When we discussed ArrayLists, we handwaved why geometric resizing is better 
than linear resizing. Now that we know asymptotics, we can finally prove this.

After N addLasts, 
runtime is Θ(N2)

After N addLasts,
runtime is Θ(N)

public void addLast(int x) {
   if (size == items.length) {
       resize(size + RFACTOR);
   }
   items[size] = x;
   size += 1;
}

public void addLast(int x) {
   if (size == items.length) {
       resize(size * RFACTOR);
   }
   items[size] = x;
   size += 1;
}



Why geometric resizing is faster

Even though the worst-case resize is still Θ(N), they happen so infrequently with 
geometric resizing that we get Θ(1) runtime on average regardless of how we order 
List operations.

Each addLast takes on 
average Θ(N) time

Each addLast 
takes on average Θ
(1) time

public void addLast(int x) {
   if (size == items.length) {
       resize(size + RFACTOR);
   }
   items[size] = x;
   size += 1;
}

public void addLast(int x) {
   if (size == items.length) {
       resize(size * RFACTOR);
   }
   items[size] = x;
   size += 1;
}



Amortized Runtime

This is known as Amortized Runtime
● Any single operation may take longer, but if we use it over many operations, 

we're guaranteed to have a better average performance
● So amortized runtime gives a better estimate of how much time it takes to 

use something in practice
● Disjoint sets also used amortized runtime; WQU with path compression still 

has Θ(log(n)) runtime in the worst case, but Θ(α(n)) amortized runtime.

addLast is Θ(1) 
amortized

public void addLast(int x) {
   if (size == items.length) {
       resize(size * RFACTOR);
   }
   items[size] = x;
   size += 1;
}



Nested For Loops
There is No Magic Shortcut for 
Asymptotic Analysis
Amortized Analysis
Recursive Analysis
Binary Search (Intuitive)
Binary Search (Exact) (Bonus Video)
MergesortRecursive Analysis

Lecture 15, CS61B, Spring 2024



Recursion, Approach 1: Intuitive [no yellkey]

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Using your intuition, give the order of growth of the runtime of this code as a 
function of N? 
A. 1
B. log N
C. N
D. N2

E. 2N

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}



Recursion, Approach 1: Intuitive

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Using your intuition, give the order of growth of the runtime of this code as a 
function of N? 
A. 1
B. log N
C. N
D. N2

E. 2N

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

5

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}

2N: Every time we 
increase N by 1, we 
double the work!



Recursion, Approach 2: Exact Counting

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
Each function call does a constant amount of work (not counting recursive calls), 
so C(N) ∈ Θ(R(N)) 
● C(1) = 1
● C(2) = 1 + 2
● C(3) = 1 + 2 + 4

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}



Recursion, Approach 2: Exact Counting: http://yellkey.com/happy

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
● C(3) = 1 + 2 + 4
● C(N) = 1 + 2 + 4 + … + ???

What is the final term of the sum?
A. N  
B. 2N          
C. 2N-1

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}

D.  2N-1

E.  2N-1-1



Recursion, Approach 2: Exact Counting

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
● C(3) = 1 + 2 + 4
● C(N) = 1 + 2 + 4 + … + ???

What is the final term of the sum?
3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}

D.  2N-1



Recursion, Approach 2: Exact Counting

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
● C(N) = 1 + 2 + 4 + … + 2N-1

Give a simple expression for C(N).
3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}



Recursion, Approach 2: Exact Counting

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
● C(N) = 1 + 2 + 4 + … + 2N-1

Give a simple expression for C(N).
● C(N) = 2(2N-1) - 1
● C(N) = 2N-1

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}



Recursion, Approach 2: Exact Counting

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Another approach: Count number of calls to f3, given by C(N).
● C(N) = 1 + 2 + 4 + … + 2N-1

● Solving, we get C(N) = 2N - 1

Since work during each call is constant:
● R(N) =  Θ(2N)

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1);
}



Recursion, A minor change

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

What happens if we make this tiny change?
● C(0) = 1
● C(1) = 1
● C(2) = 1+1+1
● C(3) = 1+1+2+1
● ?????

Give a simple expression for C(N).

public static int fib(int n) {
   if (n <= 1) 

return 1;
   return fib(n-1) + fib(n-2);
}

2

1 0

4

3

2 1

1 0



Recursion, A minor change (Out of Scope)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

For this one, we'll have to be a bit more creative:
● fib(n) returns the nth Fibonacci number Fn
● In the tree on the right, there are Fn yellow nodes

○ Why? Each leaf adds 1 to the final sum
● In the tree on the right, there are Fn-1 green nodes

○ Why? To sum k 1s, we do k-1 +s
C(N) = # yellow + # green = 2(FN)-1 = Θ(FN)

public static int fib(int n) {
   if (n <= 1) 

return 1;
   return fib(n-1) + fib(n-2);
}

2

1 0

4

3

2 1

1 0



Recursion, A minor change (Out of Scope)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

C(N) = # yellow + # green = 2(FN)-1 = Θ(FN)
If you do enough math, you find that FN∈ Θ(φN)
Where φ = (1+sqrt(5))/2 ≈ 1.618
Each function call does 1 unit of work
So R(N) = Θ(1.618N)
In conclusion: There is no Magic Shortcut for
Asymptotic Analysis

public static int fib(int n) {
   if (n <= 1) 

return 1;
   return fib(n-1) + fib(n-2);
}

2

1 0

4

3

2 1

1 0



Recursion, Approach 3: Recurrence Relations (Out of Scope for 61B)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Third approach: Count number of calls to f3, given by a “recurrence relation” for C(N).
● C(1) = 1 
● C(N) = 

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4
2C(N-1) + 1

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1)
}



Recursion, Approach 3: Recurrence Relations (Out of Scope for 61B)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Third approach: Count number of calls to f3, given by a “recurrence relation” for C(N).
● C(1) = 1 
● C(N) = 

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1)
}

More technical to solve. Won’t do this in 
our course. See next slide for solution.

2C(N-1) + 1



Recursion, Approach 3: Recurrence Relations (Out of Scope for 61B)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)).

Third approach: Count number of calls to f3, given by a “recurrence relation” for C(N).

This approach not 
covered in class. 
Provided for those of 
you who want to see a 
recurrence relation 
solution.

3

2 2

1 1 1 1

3

2 2

1 1 1 1

4

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1)
}
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Binary Search (Exact) (Bonus Video)
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Binary Search (demo: https://goo.gl/3VvJNw)

Trivial to implement?
● Idea published in 1946.
● First correct implementation in 1962.

○ Bug in Java’s binary search discovered in 2006.

See Jon Bentley’s book 
Programming Pearls.

See 
http://goo.gl/gQI0FN

static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

https://goo.gl/3VvJNw
http://goo.gl/gQI0FN


static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Intuitive): http://yellkey.com/beyond

Goal: Find runtime in terms of N = hi - lo + 1  [i.e. # of items being considered] 
● Intuitively, what is the order of growth of the worst case runtime?

A. 1
B. log2 N
C. N
D. N log2 N
E. 2N



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Intuitive)

Goal: Find runtime in terms of N = hi - lo + 1  [i.e. # of items being considered] 
● Intuitively, what is the order of growth of the worst case runtime?

B. log2N

Why? Problem size halves over and over until it gets down to 1.
● If C is number of calls to binarySearch, solve for 1 = N/2C → C = log2(N)

N
≈N/2
≈N/4
≈N/8



Log Time Is Really Terribly Fast

In practice, logarithmic time algorithms have almost constant runtimes.
● Even for incredibly huge datasets, practically equivalent to constant time.

N log
2
 N Typical runtime (seconds)

100 6.6 1 nanosecond

100,000 16.6 2.5 nanoseconds

100,000,000 26.5 4 nanoseconds

100,000,000,000 36.5 5.5 nanoseconds

100,000,000,000,000 46.5 7 nanoseconds



Binary Search 
Exact (Bonus)
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This section is available as a pre-recorded video.

It's not ”out of scope” since it’s just another example problem using the same 
techniques used throughout the lecture.



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count): Not a Live Video (no yellkey)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
Each call does constant work (w/o recursive calls)
● What is C(6), number of total calls for N = 6?

A. 6    D. 2
B. 3    E. 1
C. log

2
(6)=2.568

N=6



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
Each call does constant work (w/o recursive calls)
● What is C(6), number of total calls for N = 6?    

B. 3    

Three total calls, where N = 6, N = 3, and N = 1.

N=6

N=3

N=1

3 calls



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.

1 2 3 4 5 6 7 8 9 10 11 12 13N

1 3C(N)

N=1



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.

N=1

1 2 3 4 5 6 7 8 9 10 11 12 13N

1 2 2 3C(N) N=2 N=3



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.

N=1

1 2 3 4 5 6 7 8 9 10 11 12 13N

1 2 2 3 3 3 3C(N) N=2 N=3

4 5 6 7



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.

N=1

1 2 3 4 5 6 7 8 9 10 11 12 13N

1 2 2 3 3 3 3 4 4 4 4 4 4C(N) N=2 N=3

4 5 6 7

8 9 ...



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.

N=1

1 2 3 4 5 6 7 8 9 10 11 12 13N

1 2 2 3 3 3 3 4 4 4 4 4 4C(N) N=2 N=3

4 5 6 7

8 9 ...

C(N) = ⌊log
2
(N)⌋+1 



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.
● C(N) = ⌊log2(N)⌋+1
● Since each call takes constant time, R(N) = Θ(⌊log2(N)⌋)

○ This f(N) is way too complicated. Let’s simplify.

N=1

N=2 N=3

4 5 6 7

8 9 ...



Handy Big Theta Properties

Goal: Simplify Θ(⌊log2(N)⌋)
● Three handy properties to help us simplify:

○ ⌊f(N)⌋=Θ(f(N))    [the floor of f has same order of growth as f]

○ ⌈f(N)⌉=Θ(f(N))    [the ceiling of f has same order of growth as f]
○ logP(N) = Θ(logQ(N))       [logarithm base does not affect order of growth]

⌊log2(N)⌋ = Θ(log N)

For proof:
See online textbook exercises.

Since base is irrelevant, we omit from our 
big theta expression. We also omit the 
parenthesis around N for aesthetic 
reasons.



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (Exact Count)

Goal: Find worst case runtime in terms of N = hi - lo + 1 [i.e. # of items]
● Number of binarySearch calls.
● C(N) = ⌊log2(N)⌋+1 = Θ(log N)
● Since each call takes constant time, R(N) = Θ(log N)

… and we’re done!

N=1

N=2 N=3

4 5 6 7

8 9 ...



static int binarySearch(String[] sorted, String x, int lo, int hi)
    if (lo > hi) return -1;
    int m = (lo + hi) / 2;
    int cmp = x.compareTo(sorted[m]);
    if (cmp < 0) return binarySearch(sorted, x, lo, m - 1);
    else if (cmp > 0) return binarySearch(sorted, x, m + 1, hi);
    else return m;
}

Binary Search (using Recurrence Relations)

Approach: Measure number of string comparisons for N = hi - lo + 1.
● C(0) = 0 
● C(1) = 1
● C(N) = 1 + C((N-1)/2)

Can show that C(N) = Θ(log N). Beyond scope of class, so won’t solve in slides.
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Sorting

Along with matrix multiplication, sorting is one of the problems that pops up most 
often in asymptotic analysis.
● Given a list of Comparables, return them in sorted order

○ Assumes the comparison method is transitive, reflexive, symmetric (see 
Lecture 12), and runs in Θ(1) time.

x = List.of({“he”, “is”, “the”, “agoyatis”, “of”, “mr.”, “conchis”})

public static 
List<Comparable> 

sort(List<Comparable> x)

x = {“agoyatis”, “conchis”, “he”, “is”, “mr.”, “of”, “the”}



static List<Comparable> sort(List<Comparable> x)
    List<Comparable> firsthalf = sort(x.sublist(0, x.size()/2));

List<Comparable> secondhalf = sort(x.sublist(x.size()/2, x.size()));
return merge(firsthalf, secondhalf);

}

Mergesort Pseudocode

Mergesort is a recursive way to sort a list:
● Split the list into two parts
● Sort the two lists individually
● Merge the two lists together



The Merge Operation

Given two sorted arrays, the merge operation combines them into a single sorted 
array by successively copying the smallest item from the two arrays into a target 
array.

Merging Demo (Link)

https://docs.google.com/presentation/d/1mdCppuWQfKG5JUBHAMHPgbSv326JtCi5mvjH1-6XcMw/edit?usp=sharing


Merge Runtime: http://yellkey.com/show

How does the runtime of merge grow with N, the total number of items?
A. Θ(1)                 C. Θ(N)
B. Θ(log N)          D. Θ(N2)

2 3 6 10 11 4 5 7 8

2 3 4 5 6 7 8 10 11



Merge Runtime

How does the runtime of merge grow with N, the total number of items?
C. Θ(N). Why? Θ(1) time per element in the merged list, and the merged list has 
exactly N items

2 3 6 10 11 4 5 7 8

2 3 4 5 6 7 8 10 11



static List<Comparable> sort(List<Comparable> x)
    List<Comparable> firsthalf = sort(x.sublist(0, x.size()/2));

List<Comparable> secondhalf = sort(x.sublist(x.size()/2, x.size()));
return merge(firsthalf, secondhalf);

}

Determining Mergesort Runtime

Since we don't care about the list itself, let's simplify our code a bit
● Our runtime should be in terms of x.size(), so let's let int n = x.size()
● merge takes Θ(n) time, so let's replace that with "n units of work"



static void sortRuntime(int n)
    sortRuntime(n/2);

sortRuntime(n/2);
//n units of work

}

Determining Mergesort Runtime

Since we don't care about the list itself, let's simplify our code a bit
● Our runtime should be in terms of x.size(), so let's let int n = x.size()
● merge takes Θ(n) time, so let's replace that with "n units of work"



Example 5: Mergesort Order of Growth, yellkey.com/consider

For an array of size N, what is the worst case runtime of Mergesort?
A. Θ(1)
B. Θ(log N)
C. Θ(N)
D. Θ(N log N)
E. Θ(N2)

N

N/2 N/2

N/4 N/4 N/4 ….

N/8 N/8 ….

N/4

N/8 N/8

k

static void sortRuntime(int n)
    sortRuntime(n/2);

sortRuntime(n/2);
//n units of work

}



Example 5: Mergesort Order of Growth

Mergesort has worst case runtime =  Θ(N log N).
● Every level has N units of work.

○ Top level takes N units of work.
○ Next level takes N/2 + N/2 = N units of work.
○ One more level down: N/4 + N/4 + N/4 + N/4 = N.

● Thus, total runtime is Nk, where k is the number of levels.
○ How many levels? Goes until we get to size 1.
○ k = log2(N).

● Overall runtime is Θ(N log N).

Exact count explanation is tedious.
● Omitted here. See textbook exercises.

N

N/2 N/2

N/4 N/4 N/4 ….

N/8 N/8 ….

N/4

N/8 N/8

k



Mergesort using Recurrence Relations (Extra)

C(N): Number of calls to mergesort + number of array writes.

Only works for N=2k. Can be generalized 
at the expense of some tedium by 
separately finding Big O and Big Omega 
bounds (see next lecture).

N

N/2 N/2

N/4 N/4 N/4 ….

N/8 N/8 ….

N/4

N/8 N/8

k



Using Sorting as a Tool

Recall from Lecture 13 the dup functions, which checked if a sorted array contained 
any duplicates.
● dup1 took Θ(N2) runtime, while dup2 took Θ(N) runtime

What if the input wasn't sorted?
public static boolean dup1(int[] A) {  

  for (int i = 0; i < A.length; i += 1) {

    for (int j = i + 1; j < A.length; j += 1) {

      if (A[i] == A[j]) {

         return true;

      }

    }

  }

  return false;

}

public static boolean dup2(int[] A) {

  for (int i = 0; i < A.length - 1; i += 1) {

    if (A[i] == A[i + 1]) { 

      return true; 

    }

  }

  return false;

}dup1

dup2



Using Sorting as a Tool

What if the input wasn't sorted?
● dup1 still works normally, but it takes Θ(N2) runtime
● dup2 no longer works… Can we fix it?

public static boolean dup1(int[] A) {  

  for (int i = 0; i < A.length; i += 1) {

    for (int j = i + 1; j < A.length; j += 1) {

      if (A[i] == A[j]) {

         return true;

      }

    }

  }

  return false;

}

public static boolean dup2(int[] A) {

  for (int i = 0; i < A.length - 1; i += 1) {

    if (A[i] == A[i + 1]) { 

      return true; 

    }

  }

  return false;

}dup1

dup2



Using Sorting as a Tool

What if the input wasn't sorted?
● Solution: Sort A first!
● What's our new runtime? 

○ Sorting took Θ(N log N) time, the rest of dup2 took Θ(N) time

public static boolean dup1(int[] A) {  

  for (int i = 0; i < A.length; i += 1) {

    for (int j = i + 1; j < A.length; j += 1) {

      if (A[i] == A[j]) {

         return true;

      }

    }

  }

  return false;

}

public static boolean dup2(int[] A) {

  A = A.sort()

  for (int i = 0; i < A.length - 1; i += 1) {

    if (A[i] == A[i + 1]) { 

      return true; 

    }

  }

  return false;

}
dup1

dup2



Using Sorting as a Tool

What if the input wasn't sorted?
● dup1 still works normally, but it takes Θ(N2) runtime
● If we use sort as a black box, we can modify dup2 so it runs in Θ(N log N) time!
● Can we do better? Yes, we can get Θ(N)... once we get to hashing

public static boolean dup1(int[] A) {  

  for (int i = 0; i < A.length; i += 1) {

    for (int j = i + 1; j < A.length; j += 1) {

      if (A[i] == A[j]) {

         return true;

      }

    }

  }

  return false;

}

public static boolean dup2(int[] A) {

  A = A.sort()

  for (int i = 0; i < A.length - 1; i += 1) {

    if (A[i] == A[i + 1]) { 

      return true; 

    }

  }

  return false;

}
dup1

dup2



Linear vs. Linearithmic (N log N) vs. Quadratic

N log N is basically as good as N, and is vastly better than N2.
● For N = 1,000,000, the log N is only 20.

(from Algorithm Design: Tardos, Kleinberg)



Summary

Theoretical analysis of algorithm performance requires careful thought.
● There are no magic shortcuts for analyzing code.
● In our course, it’s OK to do exact counting or intuitive analysis.

○ Know how to sum 1k+2k+...+Nk and k0+k1+...+kN.
○ We won’t be writing mathematical proofs in this class.

● Many runtime problems you’ll do in this class resemble one of the five problems 
from today. See textbook, study guide, and discussion for more practice.

● This topic has one of the highest skill ceilings of all topics in the course, and is a 
modern research topic

Different solutions to the same problem, e.g. sorting,  may have different runtimes.
● N2 vs. N log N is an enormous difference.
● Going from N log N to N is nice, but not a radical change.

Once you prove runtime for one problem, you may be able to use it in other problems 
to speed things up!


